Two cases of birth defects overlapping Stratton-Parker syndrome after multiple pesticide exposure

R Mesnage, E Clair, J Spiroux de Vendômois, et al.

Occup Environ Med 2010 67: 359 originally published online November 30, 2009
doi: 10.1136/oem.2009.052969

Updated information and services can be found at:
http://oem.bmj.com/content/67/5/359.full.html

These include:

References
This article cites 6 articles
http://oem.bmj.com/content/67/5/359.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To order reprints of this article go to:
http://oem.bmj.com/cgi/reprintform

To subscribe to *Occupational and Environmental Medicine* go to:
http://oem.bmj.com/subscriptions
LETTER
Two cases of birth defects overlapping Stratton-Parker syndrome after multiple pesticide exposure

In January 2009, a farming couple contacted us because two of their three children had been born with congenital malformations. One had a somatotrophic deficiency, an imperforate anus and a small atrial septal defect at birth. The other had hypospadias, a microphallus, total deficiency of growth hormone and an imperforate anus. These disorders are rarely encountered together in the same person or family. However, in some cases they have been grouped with other symptoms under Stratton-Parker syndrome, the aetiology of which remains unknown.1 2 Stratton-Parker syndrome symptoms noticeably overlap those found in our cases (Table 1). As only males have been affected to date and all cases have occurred sporadically, some authors propose an X-linked recessive inheritance.3 As in our cases there are no known familial antecedents or genetic origins identified to date, an environmental origin can be postulated. In particular, many pesticides were used by this family around the time of the pregnancies. The father sprayed, without protection, more than 1.3 tons of pesticides per year (including 300 l of glyphosate based herbicides) which contain well-known endocrine disruptors such as carbendazim, 2,4-dichlorophenoxyacetic acid, glyphosate, roxynil, linuron, trifluralin and vinclozolin. The whole family had close contact with the father, consumed the products of their garden and were also exposed through the consumption of pigs and poultry fed farm produce.

The intensive use of pesticides puts farmers at risk of reproductive disorders. Exposure to some pesticides during pregnancy is associated with increased serum oestrogenic bioactivity leading to genital malformations.5 This family was exposed to mixtures of different chemicals. The adjuvants in formulations may amplify the toxicities of the active principles,6 which can act in synergy like most pollutants.7 For instance, some of the antiandrogenic chemicals, such as vinclozolin, sprayed by the father can act synergistically with other antiandrogens with cumulative effects on male reproductive development in laboratory animals.8 The results of in vivo experiments with pesticides can explain and/or reproduce at least in part the symptoms seen in this family. The adverse effects of these pesticide cocktails are more than the sum of the effects of their separate constituents. Thus, in our case we cannot exclude the role of a cocktail of endocrine disruptors at epigenetic, genetic or physiological levels during parental gametogenesis or pregnancy.

The effects reported overlap those of Stratton-Parker syndrome. Generally, a causal relationship is established through epidemiology for microbial and hereditary pathologies. However, this is not possible for environmental disorders: their specific pattern is usually caused by the multiple, long-term and combined effects of xenobiotics or external factors. This case shows that there are real concerns about the health of those exposed to mixtures of endocrine disruptors. We need to develop an active precautionary approach when there is scientific uncertainty and improve the epidemiological and toxicological knowledge of commercial pesticide mixtures.

Table 1 Comparison of our cases to those reported by Stratton and Parker

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Male</td>
<td>Male</td>
</tr>
<tr>
<td>Age at last examination</td>
<td>17 months</td>
<td>5 years 1 month</td>
<td>1 year 1 month</td>
</tr>
<tr>
<td>Early developmental delay</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Congenital heart defects</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pituitary gland hypoplasia</td>
<td>NR</td>
<td>+</td>
<td>NR</td>
</tr>
<tr>
<td>Wormian bones</td>
<td>+</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Renal hypoplasia</td>
<td>+</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Bowel defects</td>
<td>Imperforate anus</td>
<td>Imperforate anus</td>
<td>Imperforate anus</td>
</tr>
<tr>
<td>Genital abnormalities</td>
<td>Bilateral cryptorchidism, hypospadias</td>
<td>–</td>
<td>Microphallus, hypospadias</td>
</tr>
<tr>
<td>Brachycaudalactyly</td>
<td>+</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hypoplastic nose</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+, present; –, absent; NR, not reported.

What this paper adds

- Stratton-Parker syndrome is rare and encompasses growth retardation, imperforate anus and often genital abnormalities, but no genetic origin is known.
- Two new cases are reported from the same family spreading 1.3 tons of pesticides per year without protection.
- Among these pesticides are numerous endocrine disrupters with similar developmental combined effects in laboratory animals.
- We suggest possible environmental origins for this syndrome; a synergic pollution effect during embryonic development cannot be excluded.
- We need to develop further an active precautionary approach when there is scientific uncertainty and improve the epidemiological and toxicological knowledge of commercial pesticide mixtures.

REFERENCES